TURBULENCE WITH LOW HETEROGENEITY AND ANISOTROPY

V. A. Gorodtsov UDC 532.517.4

It is shown that using expansions with respect to the average velocity gradient, retaining
only the first two terms of the expansion, one can satisfactorily describe the turbulence in
a pipe in the region of the core of the stream.

Real large-scale turbulence does not fit into the framework of a simple mathematical description
using uniform isotropic random fields. Nevertheless, in many types of flow there are regions with a small
deviation of the flow from uniform and isotropic and here a simplified description is possible using one or
another expansion with respect to the degree of departure from the isotropic state.

If the scales of the heterogeneities of the turbulent pulsation fields are much smaller than the scales
of the heterogeneity of the average field, then all the heterogeneity and anisotropy of the pulsations in a
first approximation are due to the orienting effect of the average field. Then the average characteristics
of the pulsation fields depend isotropically on the characteristics of the main stream and one can be limited
to the first terms of expansions with respect to these values,

A concrete example of established turbulent flow in a round pipe far from its walls is analyzed later.
Strictly speaking, the assumption that the scales of the average and pulsation fields differ strongly is not
correct here (on the whole, it is satisfied extremely rarely for real turbulent flows).* Therefore, a non-
local description of the dependence of the pulsations on the average field would be more suitable, Never-
theless, even a simplified local description of the controlling effect of the anisotropy of the average stream
on the pulsations proves to be satisfactory here, as will be seen.

The flow in a round pipe has axial symmetry, and all the characteristics of the turbulence, generally
speaking, can depend on the unit vector of the direction of the average stream A=<u>/[{<u>| [1]. If one
assumes that the dependence of the pulsations on the average stream is local and they depend on the lower
derivatives of the average velocity in an invariant way relative to arbitrary axisymmetric motions (and re-
flections), then the single-point tensor characteristics of the pulsation field must be isotropic tensor func-

tions of the vector A and of the average deformation velocity tensor <eij> =1/2< aui/axj +8uj/8xi> .
For the values Ri-(;, ;) = <u;(X)u!(X)> and Piz<p'(>?)u'i(§)> such isofropic tensor functions for the
developed flow far from the wall of the pipe have the form

Ry = agld;; + 2ayu,ry <e;> - 2a,15 <y ><ley> +
+ agihh - Qa0 (<Cerg>hohy -+ <l hohy) +

+ a7 (<> <g™> oy + <ey><Te, > Aghy), @)

Py = (0%, -+ 2byulry<e,,> + 2bju,rt<e > <oy >,

with the dimensionless coefficients aj and by depending on the dimensionless invariants Iy = )\é =1, and
1151'0 < eaa>/u* =0:

@)

* [t is well known that such an assumption is violated, first of all, for pulsations in the direction of the
main stream. Itis just for the longitudinal pulsations, as will be seen, that the simplest desecription
proves to be the least accurate (see Fig. 1).
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Fig. 1. Distributions of intensity of turbulent pulsations in the core of
a stream in a pipe. The points correSpond to Laufer's data [2]: 1)
V{u! 2)/u,;<, 2) (u Y Jux; 3) x/(u % /us; the curves correspond to Eqs.

).

Fig. 2. Pulsation energy balance in the core of a stream in a pipe.
The solid curves correspond to Egs. (10) while the points and dashed
lines correspond to Laufer's data [2].

1= (rg <<egg™>/u.),
L =R<e, > <gp,><le,,>> U,
=y <ltoy™> Mgty T == rh <<eug™ <<eg,™ hh /et
since for the flow of an incompressible * fluid near the axis of a pipe the characteristic scale values are
the dynamic velocity ux and the pipe radius r.

The dissipative tenbor Dy, = v< Oy /8x )(au /8%,)> and the stream vector of the kinetic energy of the
pulsations Qj(x, x) =< ul (x)ua (x)/2 have an analogou., general form.

In a cylindrical coordinate system whose axis coincides with the pipe axis the average deformation
velocify tensor has only two nonzero componeats <8l T <y =1/2<8u/08r>, while the vector X has the
one component A, =1.

Since only Iy=1, LL=I;=1=1/2< du'/0p>? among the invariants are different from zero, in the in-
dicated coordinate system it follows from (1) and {2) that

Rxx/ui =a,+ a3+ (2 +a5) ],
R‘P‘P/ui =y, Rrr/uz =4a, +‘a2[1
Ry /i, = (ay + a)<<0u" /0p>>, Roq = Ry =0, 3
Pt = by 4 byl, Pju =b<0u*/dp>, Py=0.
Here the coefficients ay and by depend on I, while p=r/r,. Analogous equations can be written for
and Q.

Near the pipe axis the value of the average velocity gradient (21)1/ 2-< 3u+/8p> is small, Letusas-
sume that the functions ay @) and by (I) are expanded in series with respect to whole powers of I and let us
keep only the first two terms in these expansions. Then for the Reynolds shear stress we obtain @ym
are numerical coefficients)

er/u ~{ay, -+ am) < % > + - (Qu + ) <‘?> s @)

On the other hand, it is known [2, 3] that for regions far from the wall it follows from the equation
of conservation of momentum that

Ry lu? =p. ®)

*An incompressible medium with a density different from unity is analyzed later.
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Hence it is seen that in the first approximation the average velocity profile neay the pipe axis must be
parabolic,

Such a parabolic approximation of the average velocity profile for the flow in pipes is well known
{2, 3]. According to Fig. 7.49 in [2], the experimental data of Laufer are satisfactorily described by the
equation

<yt~ 7.2p7
U <u > p 6)

up to p=~0.9 (a different value of the coefficient is given in the book {3]: 7.6).

Let us compare the expansions for other values with Laufer's data, which are presented in [2]. From
(3) we get the equations
Reaftls = g0 + gy + (@1 + 51+ 30+ 050) | +
Rw/ufzam +apl+...,
Ryl = gy -+ (@ + ag) T+ . -, (7
Pl == (byy + byyd)y<<Ou™fp>-- . ..
which represent expansions with respect to p?, since from (4)-(6) we have I =I(p?) ~ (10p)* +

The experimental data for the root-mean-square velocity pulsations are satisfactorily described by
the quadratic expressions

R, /u? 2 0.65 + 502, Ryg/ul ~0.55 - 2.50% R, /Jul=~=0.55 + p* (8)

with p £ 0.4, 0.6, and 0.8 for R, and Ry, respectively, as is seen from Fig. 1. The numerical
values of the coefficients of (8) are obgamed wuth the substitution of agy = 0.55, a3~ 0.1, ag ~ag; +az; ~
0.04, and agg~ — 0.015. It should be noted that in the region of p £ 0.9 the departure of the points from
the curves described by Eqs. (8) is small., This indicates the relative smallness of the coefficients of
the succeeding terms of the expansion with respect to p?.

Experimental estimates of the variation in the different terms of the equation of pulsation-energy
balance in the core of a turbulent stream in a pipe
1 0 ou*

— — (0P = L 7 X er —_—=
Ty m/u+ (p 1) = ry Qi) — R/t < P )

are presented in [2] in Figs. 7.42 and 7.44 and in [3]in Fig. 9.12.
Using the expansions which have heen discussed, it is not hard to verify that the equations
reDaaltd = 2.1 + 120% P,ju? ~ 0.7¢7,
— R/l <dut(8p> ~ 144p%, — Q,Ju’~0.9 - 0. 2p (10}
satisfactorily describe the behavior of the different terms * of Eq. (9) when p £20.7. This is well seen
from Fig. 2, in which Laufer's data for the dissipation when 2rjU/v =5 - 10* are shown by points while the

curves of Fig. 7.44 from [2] are shown by dashes where they deviate from the solid curves corresponding
to the approximations (10).

Thus, the experimental data for the core of a turbulent stream in a pipe can be described successfully
with the help of ihe first two terms of an expansion with respect to the average velocity gradient with a
higher accuracy than could be expected on the basis of general considerations.

In conclusion, we note that neither the viscosity nor the size of the pipe plays an important role for
developed turbulent flow of a viscous fluid in the region of 0.131—p> 100/r;", and therefore, the functions

here are different from (6), (8), and (10). In particular, the average velocity profile has the logarithmic
form {2, 3]

Ur —<u'>=~—25In(l —p) + B,. . (11)

* The slight incompatibility of the numerical coefficients in (10), revealed when these expressions are sub-
stituted into (9), is covered by the inaccuracy of the figures in [2, 3] and evidently does not exceed the in~
accuracy of the measurements.
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If one approximates the entire velocity profile when 1 — p> 100/1'0 by the two simplified expressions

(6) and (11), which pass smoothly into one another, then for B; and for the position of the matchup point
n° =] — p we obtain the estimates

1" =022, B, = 0.6, (12)

NOTATION

<u>, average velocity vector; A, unit vector of stream direction; e;;, deformation velocity tensor;
Rij’ Reynolds stress tensor; Dm, pulsation energy dissipation; Qj, P;, stream vectors of pulsation energy
and pressure; r;, pipe radius; r, distance from axis; 5 =r/r;, dimensionless distance from axis; ux, dy-
namic velocity; I, simultaneous lnvarlan’cs of vector A; and tensor <el&>’ ag, by, invariant functions;
akn, byy, numerical coefficients; u —u/u*, dlmensmnless velocity; n%, boundary of turbulent core.
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